
Introspective GAN: Learning to Grow a GAN for
Incremental Generation and Classification

Supplementary Material

Chen Hea,b, Ruiping Wanga,b,∗, Shiguang Shana,b, Xilin Chena,b

aKey Laboratory of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing, 100190, China

bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

1. Introduction

In this supplementary material, we provide more discussions with some re-

lated works (Sec. 2 in the main paper), the analysis of the prototype-based

classifier via a Bayesian approach (Sec. 3.3), the comparison of the adopted

benchmark with existing ones in incremental generation or classification (Sec.5

4.1 in the main paper), implementation details (Sec. 4.1 in the main paper),

the additional result curves on MNIST and ImageNet-Dogs (Sec. 4.2 in the

main paper), the generated images over time (caption in Fig. 7), the numbers

of generated samples of each class of DGR (Sec. 4.5 in the main paper), hyper-

parameter analysis (multiple sections in the main paper), memory requirements10

and running time comparisons (Sec. 4.1), memory comparison for GANs and

real samples (Sec. 4.6), and the class orders (Table 2 in the main paper) respec-

tively.

2. More Discussions with Some Related Works

Their similarities and differences with several works [1, 2, 3] are as follows:15

(1) This work [1] thoroughly compares different incremental generation meth-

ods and different choices of the generators (e.g. GAN and VAE) on MNIST,

∗Corresponding author
Email address: wangruiping@ict.ac.cn (Ruiping Wang)

Preprint submitted to Journal of LATEX Templates December 16, 2023

F-MNIST, and CIFAR-10 (only with best performing CL strategy), whereas we

are more interested in a joint incremental generation and classification task and

compare the methods for this task. Moreover, the latest evaluated method is20

DGR which was proposed in 2017, where the latest evaluated method is DGM

which was proposed in 2019.

(2) This work [2] mainly focuses on Class Incremental Learning (classifica-

tion) and the generators (i.e. VAEs) used in this work are for generative replay

to boost the classification performance, where our work focuses on the joint25

incremental generation and classification task and validate the mutual benefits

of generation and classification in incremental scenarios.

(3) This work [3] provides an interesting idea by pre-allocating binary codes

(i.e. hash codes) for image samples and leveraging autoencoders to reconstruct

these samples via the binary codes above. The work mainly revolves around in-30

cremental classification and focuses on minimizing the memory usage in memory

replay by using binary codes (since they require less memory compared with real

vectors), while our work mainly focuses on the mutual benefits of incremental

generation and classification.

Diffusion models are effective and popular in recent years. Readers may35

be curious about why we still use GANs instead of diffusion models. Here we

summarize the limitations and strengths of GANs over diffusion models, and

share our thoughouts over these two models.

Limitations: (1) The generated images of diffusion models are of higher

quality compared with those of GANs judging from the fewer artifacts in the40

generated images or FIDs in recent papers [4, 5]. (2) The GAN models are less

stable for training due to the adversarial objective, and often suffer from the

mode collapse problem [6]. In contrast, diffusion models have a stable training

process and provide more diversity because they are likelihood-based [5].

Strengths: (1) The forward pass in GAN is generally quicker, whereas the45

diffusion models are slower at sampling time due to the use of multiple denoising

steps [7]. There are diffusion models that use a single-step sampling, but the

samples are not yet competitive with GANs [8]. (2) The latent space of GANs

2

contains subspaces associated with visual attributes, thus by changing the value

of certain feature we can edit the image (image editing applications) [9]. As for50

the diffusion models, the latents are usually modeled to have the same dimen-

sionality as the image, resulting in less semantic information in the latent space.

In short, the latent space of diffusion models has been explored much less than

in the case of GANs [5].

The aforementioned strengths and weaknesses are also confirmed by our55

experimental results with DDGR [10]: DDGR generates images of better quality,

which leads to much higher classification accuracy. However, the sampling speed

of DDGR is 1.48s per image, while the sampling speed of IntroGAN is only about

0.002s (over 600 times faster). The training time of DDGR is 3 hours in the

first class increment of Fashion-MNIST, while that of IntroGAN is 9 minutes60

(20 times faster). The slowness of training and sampling will restrict the actual

use in incremental scenarios (e.g. mobile devices).

Judging from the limitations and strengths above, we can find that these

two generative models are trade-offs between performance and efficiency, which

are suitable for different scenarios currently. Going back to our work, we select65

GANs simply due to its dominance in 2020s, but the generator can also be re-

placed with other generative models including the diffusion model. Note that

the DDGR is more like a diffusion-model based version of DGR. Our main focus

is the mutual benefit of generation and classification in incremental scenarios.

Choosing which type of generative models is orthogonal to our motivation. An-70

other thing to note is that in the “Few-Shot Learning Methods" part of Sec. 3.5,

we write that we can either learn class distributions (ours) or perturbation. We

think that with diffusion models, we are able to learn perturbation by gradu-

ally adding/removing noises to/from the image, and we can finally get the class

prototype in the image space. This interesting idea is left for future works.75

3

3. Prototype-based Classifier from the Bayesian Perspective

In Sec. 3.3 of the main paper, we mentioned that the prototype-based classi-

fier using relative prototype has a Bayesian background and here we will explain

why. Assuming that the features of each class samples obey a multivariate

Gaussian distribution (dimension d), the probability density function is:80

p(x|c) =
1

(2π)
1
2 |Σc|

d
2

exp{−1

2
(F (x)− µc)TΣ−1

c (F (x)− µc)} (1)

According to the Bayes’ theorem, we have:

p(c|x) =
p(x|c)p(c)
p(x)

=
p(x|c)p(c)

ΣKi=1p(x|i)p(i)
(2)

Assuming that each class has equal prior probability p(i) and the covariance

matrix is σ2I where I is an identity matrix, the above equation becomes:

p(c|x) =
exp(− 1

2σ2 ‖F (x)− µc‖22)

ΣKi=1 exp(− 1
2σ2 ‖F (x)− µi‖22)

(3)

In the main text, we use p(c) to estimate µc and γ to substitute 1
2σ2 . The

above equation becomes:85

p(c|x) =
exp(−γ‖F (x)− p(c)‖22)

ΣKi=1 exp(−γ‖F (x)− p(i)‖22)
(4)

It is exactly Eq. 7 when L2 distance is used in the main text, which demon-

strates the relationship between Bayesian probability and prototype-based clas-

sifier.

4. Comparisons of Incremental Learning Benchmarks

We refer to the existing benchmarks in incremental generation or classifica-90

tion to design the joint task. Table 1 lists the datasets and settings adopted

in previous studies of incremental generation, incremental classification and our

joint task. The numbers of classes used by incremental generation methods

are generally no more than 10. It is because incremental generation is harder

4

and less explored compared to incremental classification. Therefore we make a95

compromise and mainly refer to settings for incremental generation when de-

signing the new benchmarks. From Table 1 it can be seen that the numbers

of classes and training samples for IntroGAN are at the same level with pre-

vious incremental generation approaches, indicating that the new benchmarks

are reasonable.100

Another compromise is on how many classes to be added in each training

session. Since adding one class at a time is not a natural setting for incremental

classification (when there is only one class, training a classifier is meaningless).

Besides, almost all incremental classification methods start with adding two

classes at a time. Therefore, we also start from adding two classes at a time as105

shown in Table 2 in the main paper. Adding two classes at a time is a difficult

setting because it leads to more training sessions which incurs much severe catas-

trophic forgetting (this phenomenon can be seen in other papers like [11, 12]).

Thus, we perform the challenging two-class adding experiments on relatively

easy datasets MNIST, Fashion-MNIST and SVHN. For ImageNet-Dogs, we add110

ten classes at a time because most methods perform less satisfactory even un-

der this setting and it is thus not necessary to further increase the difficulty

by using the two-class adding scenario. Also, adding two classes at a time on

ImageNet-Dogs needs much more time for training (15 training sessions).

5. Implementation Details115

All methods adopt an Adam optimizer [13] with a base learnings rate 2×10−4

and train for 10,000 iterations with a batch size of 100. For MNIST [14], Fashion-

MNIST [15] and SVHN [16], two parameters (β1, β2) of the Adam optimizer are

set to (0.5, 0.999). The discriminator/classifier network is LeNet-like with three

convolutional layers and one fully connected layer; the generator is roughly the120

reversed version of the discriminator/classifier inspired by the implementation

of [17]. For ImageNet-Dogs [18] (ImageNet-Dogs is a special down-sampled

Stanford Dogs [19]), (β1, β2) are set to (0, 0.9) and the batch size is 64. The

5

Dataset
Generation Classification Joint

DGM MeRGAN DGR iCaRL ESGR IntroGAN

MNIST 10,60K 10,60K 10,60K - - 10,60K

F-MNIST - - - - - 10,60K

SVHN 10,73K 10,73K 10,73K - - 10,73K

C-10 10,50K - - - - -

C-100 - - - 100,50K 100,50K -

ImageNet
30,39K/

50,65K
- -

100,130K/

1000,1300K
120,156K 30,39K

LSUN - 4,400K - - - -

Table 1: The number of classes and training samples of the datasets chosen by different

methods (separated by the comma). F-MNIST is short for Fashion-MNIST. C-10 and C-

100 are short for CIFAR-10 and CIFAR-100. Note that ESGR is classified into classification

method because it is oriented for classification only.

network is ResNet-like with four ResBlocks for the generator and five for the

discriminator/classifier with spectral normalization [20].125

Joint Training. The model is just a conventional inner-product based soft-

max classifier. For each class increment, all training samples from the seen

classes are added for training and the fully connected layer is initialized ran-

domly. The other hyper-parameters are almost the same with the implementa-

tions of other methods.130

Fine-tuning. It is almost the same with the settings of Joint Training

above except: (1) for each class increment only new class samples are used for

training; (2) the improved initialization technique is used.

IntroGAN (Introspective GAN). We assign 20 prototypes for each class

(M = 20). The temperature γ controls the smoothness of output probabilities135

to make them neither too close nor distant. Since the squared L2 distance in Eq.

7 is usually big (≈ 102 in practice), a smaller γ should be better for optimization

and it is set to 0.01 by default (for the experiment in Sec. 4.5 it is set to 0.1).

6

class exemplars

Ft

new data

Ct

HORSE

DOG

BULL

new class
feature

extractor
classifier

embedding space

BULL

forward pass
backward pass

prototype exemplar

HORSE DOG BULL

HORSE

DOG

BULL

HORSE

DOG

training set

copy

Figure 1: Schematic illustration of the variant of IntroGAN named IntroNet similar to Fig. 4

in the main paper. Compared to IntroGAN, the discriminator and the generator are removed,

and only a prototype-based classifier is left.

Our experience is to let the input of the exp(·) in Eq. 7 have a magnitude of

around 1. The weighting factors α and β in the classification loss are set to140

0.1 and 1 respectively inspired by the original implementation of AC-GAN [21].

The class prototypes are updated at a certain interval (e.g. 2,000 iterations) for

feature k-means and stay fixed for feature invariant settings like random and

image k-means.

IntroNet. For better understanding, we draw an illustration diagram simi-145

lar to Fig. 4 in the main paper to show the framework of IntroNet (Fig. 1 here).

As illustrated in Sec. 4.4 in the main paper, we remove the GAN out of the

original IntroGAN framework. Specifically, we remove the discriminator and

the generator, thus there is only one prototype-based classifier left. Since there

are no generated samples of old classes to be replayed anymore, the training set150

at time t becomes {X(1)
exem, . . . , X

(t−1)
exem , X

(t)
train}, which is usually imbalanced and

we duplicate the exemplars of old classes for multiple times to make each class

equally sampled. To make fair comparison, we use exactly the same exemplars

selected in IntroGAN.

MeRGAN-JTR (Memory Replay GAN-Joint Training [22]). As155

illustrated in the main paper, the official implementation by the original author

of MeRGAN-JTR [22] performs badly in classification (accuracy for Task 1-5 on

7

MNIST: 99%, 49%, 33%, 25%, 21%). The less satisfactory result is not because

the code is run wrongly, but due to the fact that the original method does not

consider using the classifier of AC-GAN for classification nor try to optimize this160

performance. However, one tiny modification can bring up the performance,

which is to create a balanced training set combining old replayed samples and

new real samples as in the training process of IntroGAN (mentioned in Sec 3.4

in the main paper). Thus, all results of MeRGAN-JTR reported in our paper

are based on this modified version with improved learning techniques. Similar165

to IntroGAN, the weighting factors in the classification loss are set to 0.1 and

1 for generated data and real data respectively inspired by the implementation

of AC-GAN in [17].

DGR (Deep Generative Replay [23]). The official code of DGR is

not released and we implement it ourselves. The ratio r represents the desired170

importance of a new task compared to the older tasks. Since the authors didn’t

offer experience on how to choose the optimal r, we empirically set r to 0.5

which is also used in the most popular Github non-official implementation of

DGR1. The generator and the solver both use an Adam optimizer with a base

learning rate of 2× 10−4 and are trained for 10,000 iterations.175

iCaRL [11]. We use the code released by the author. The original imple-

mentation of iCaRL uses a fixed memory bound to store exemplars of all classes

(the more classes, the less exemplars for each class). To match our experimental

setups, it is changed to assign M exemplars for each class (note that it is not our

invention and other works also have this setting [18, 24, 12]). Also, the original180

codes of iCaRL trains for a fixed number of epochs instead of iterations. To make

fair comparison with others, we convert iCaRL to iteration-based training and

Adam optimizer (we tune the best learning rate) on MNIST, Fashion-MNIST

and SVHN. For ImageNet-Dogs, we empirically use 60 epochs and stochastic

gradient descent with momentum as in the original code of iCaRL (their best185

settings). To show the result of iCaRL in the iteration-based curve like Fig. 3,

1https://github.com/kuc2477/pytorch-deep-generative-replay

8

we only evaluate the final model of each task (in this situation, iterations on

x-axis does not mean anything).

LwF (Learning without Forgetting [25]). We use the version imple-

mented by iCaRL (the iCaRL paper names it LwF.MC), which is a little different190

from the original LwF in that: softmax is changed to sigmoid for classifcation;

the prototypes are also added to the training set for training. On ImageNet-

Dogs, we also adopt the original epoch-based training which is the same as

iCaRL’s mentioned above.

DGM [26]. The original codes and hyper-parameters from the authors are195

used. We only change the setting from adding one class to adding two classes

at a time to match our experimental setups. Note that DGM also uses a fixed

number of epochs instead iterations, so only the performance of the final model

of each task is shown on the result curves (similar to iCaRL mentioned above).

The authors offer codes on MNIST, which can be easily adapted to Fashion-200

MNIST. As for ImageNet-Dogs, we use the official code of DGM on ImageNet

and only changed the classes to be learned (i.e. keeping their recommended

hyper-parameters).

DDGR. The original codes and basically the same hyper-parameters from

the authors are used. We add data loaders for MNIST, Fasion-MNIST, and205

SVHN. For ImageNet-Dogs, the obtained accuracy using the recommended hy-

perparameters by the authors is almost similar as random guess (e.g. for ten

classes, the accuracy is about 10%), which we think is more likely an inappropri-

ate choice of the hyperparameters instead of the problem of the method itself.

Thus, we do not show the results on ImageNet-Dogs in Table 3 in the main210

paper and fill the results with blanks (“-”) in the table.

6. Additional Results

6.1. Result Curves on MNIST and ImageNet-Dogs

To save space, we only show the overall performance of different methods

on MNIST and ImageNet-Dogs measured by TA-ACC/FID in the main paper.215

9

Here we add the corresponding ACC and FID curves on MNIST and ImageNet-

Dogs similar to those on Fashion-MNIST and SVHN (shown here in Fig. 2 and

3). It can be observed that IntroGAN still takes the lead in ACC, indicating its

strong discriminative power endowed by the prototype-based classification.

On MNIST (Fig. 2), the performances of different methods are quite similar220

to those on Fashion-MNIST in the main paper except that MeRGAN-JTR and

IntroGAN are on a par for both classification and generation. We attribute the

satisfactory performances of MeRGAN-JTR and IntroGAN to the superiority

of the end-to-end training of the generator and classifier which is in essence

endowed by AC-GAN. Since MNIST is an easy dataset, those two methods225

have nearly identical performance compared to others.

On ImageNet-Dogs (Fig. 3), IntroGAN demonstrates superior performance

for incremental classification, which is even better than Upperbound. The reason

is probably due to the robustness of the prototype-based classifier which is also

analyzed in Sec. 4.2 and Sec. 4.3. iCaRL is lower than LwF and it is probably230

because iCaRL is sensitive to the choice of the feature extractor, which is already

explained in Sec. 4.2 in the main paper. As for generation, the performance of

IntroGAN is in the middle of the three. The reason might be that the dataset is

hard but IntroGAN has a limited capacity. IntroGAN sacrifices some generation

performance for a much better classification performance.235

6.2. Generated Images Over Time

In this subsection, we show the generated images over time for IntroGAN

(Fig. 4) and MeRGAN (Fig. 5) on MNIST, Fashion-MNIST, SVHN and ImageNet-

Dogs. From these results, it can be observed that both methods are able to

generate the old classes pretty well in incremental scenarios, which is consistent240

with the quantitative results via FIDs in the main paper. As for DGR, since

it uses a unsupervised GAN, we cannot fix the noise and label to observe the

generated images over time. Thus, we do not show the generated images of

DGR.

10

98.0

100.0

Ta
sk

 I
(1

-2
)

MNIST Classification (ACC)

80.0

100.0

Ta
sk

 II
(1

-4
)

80.0

100.0

Ta
sk

 II
I

(1
-6

)

80.0

100.0

Ta
sk

 IV
(1

-8
)

0
(add 1-2)

10000
(add 3-4)

20000
(add 5-6)

30000
(add 7-8)

40000
(add 9-10)

50000

iterations

70.0
80.0
90.0

100.0

Ta
sk

 V
(1

-1
0)

Upperbound
IntroGAN
IntroNet
MeRGAN-JTR
DGR
iCaRL
LwF

25.0

50.0

Ta
sk

 I
(1

-2
)

MNIST Generation (FID)

20.0

40.0

Ta
sk

 II
(1

-4
)

25.0

50.0

Ta
sk

 II
I

(1
-6

)

25.0

50.0

Ta
sk

 IV
(1

-8
)

0
(add 1-2)

10000
(add 3-4)

20000
(add 5-6)

30000
(add 7-8)

40000
(add 9-10)

50000

iterations

20.0

40.0

Ta
sk

 V
(1

-1
0)

IntroGAN
MeRGAN-JTR
DGR

Figure 2: The ACC and FID curves of different methods on MNIST. Five sub-figures vertically

indicate five different tasks. Note that for FID, the lower, the better.

20.0

40.0

60.0

Ta
sk

 I
(1

-1
0)

ImageNet-Dogs Classification (ACC)

10.0

20.0

30.0

Ta
sk

 II
(1

-2
0)

0
(add 1-10)

5000 10000
(add 11-20)

15000 20000
(add 21-30)

25000 30000

iterations

10.0

20.0

Ta
sk

 II
I

(1
-3

0)

Upperbound
IntroGAN
IntroNet
MeRGAN-JTR
DGR
iCaRL
LwF

160.0

180.0

200.0

Ta
sk

 I
(1

-1
0)

ImageNet-Dogs Generation (FID)

160.0

170.0

180.0

190.0

Ta
sk

 II
(1

-2
0)

0
(add 1-10)

5000 10000
(add 11-20)

15000 20000
(add 21-30)

25000 30000

iterations

165.0

170.0

175.0

Ta
sk

 II
I

(1
-3

0) IntroGAN
MeRGAN-JTR
DGR

Figure 3: The ACC and FID curves of different methods on ImageNet-Dogs. Three sub-figures

vertically indicate three different tasks. Note that for FID, the lower, the better.

11

MNIST Fashion-MNIST SVHN

ImageNet-Dogs

Figure 4: The generated images of IntroGAN over time on four datasets. Each row of a

dataset represents a class increment. For each column of the same dataset, the used noise

vector is the same.

MNIST Fashion-MNIST SVHN

ImageNet-Dogs

Figure 5: The generated images of MeRGAN over time on four datasets. The organization of

this figure is the same as Fig. 4.

12

MNIST Fashion-MNIST SVHN

Class Number Ratio Class Number Ratio Class Number Ratio

‘0’ 0 0.00% T-shirt 20299 20.30% ‘0’ 1102 1.10%

‘1’ 97128 97.13% Trouser 50905 50.91% ‘1’ 45652 45.65%

‘2’ 54 0.05% Pullover 5770 5.77% ‘2’ 33928 33.93%

‘3’ 605 0.61% Dress 10024 10.02% ‘3’ 6677 6.68%

‘4’ 34 0.03% Coat 5714 5.71% ‘4’ 4415 4.42%

‘5’ 217 0.22% Sandal 57 0.06% ‘5’ 2566 2.57%

‘6’ 115 0.12% Shirt 6932 6.93% ‘6’ 1972 1.97%

‘7’ 527 0.53% Sneaker 1 0.00% ‘7’ 1633 1.63%

‘8’ 485 0.49% Bag 281 0.28% ‘8’ 977 0.98%

‘9’ 835 0.84% Ankle boot 17 0.02% ‘9’ 1078 1.08%

Table 2: The number of the generated samples for each class of DGR on three datasets

(100,000 in total for each dataset). The ratio is obtained by dividing the number of samples

by the total number of generated samples 100,000.

6.3. Numbers of Generated Images of DGR245

In Sec. 4.4 of the main paper, we show the pie charts which depicts the

portions of generated images of all classes using DGR. The full statistics are

shown in Table 6.1, which provides a more quantitative view of the pie charts

in the main paper. From the table it can be seen that the generated samples of

DGR are highly imbalanced, especially on MNIST DGR even fails to generate250

digit ‘0’.

6.4. Hyper-parameter Analysis

Exemplar Selection Strategy. We evaluate the following settings: (1)

select randomly (random); (2) select M samples closest to M cluster centers

respectively in the image space via K-means (image k-means); (3) same as (2)255

except that we cluster in the feature space (feature k-means). From Table 3,

the conclusion is that image k-means is slightly better than random, and they

both outperform feature k-means by a large margin. The reason for the unsat-

isfactory result of feature k-means is that it is performed in the feature space

which relies on the current classification task. Incremental learning algorithms,260

however, need to have far-sight and store information that is important for the

future tasks as well: image k-means and random are more likely to achieve

this goal. Other papers also have similar conclusions that specially designed

13

Exem. Selection
MNIST Fashion-MNIST SVHN

ACC FID ACC FID ACC FID

Image k-means 97.57 8.63 88.22 25.09 77.55 105.88

Feature k-means 95.07 110.23 86.93 26.17 71.53 95.07

Random 97.41 8.90 88.17 25.45 77.26 91.64

Table 3: The results of IntroGAN using different exemplar selection strategies on (Fashion-

)MNIST and SVHN. The best score is highlighted in bold. Exem.=Exemplar.

exemplar selection strategy does not have substantial superiority over random

selection [27, 24]. Due to the simpleness and effectiveness of random selection,265

we use it by default.

Number of Exemplars. we present the analysis of the number of ex-

emplars for each class M in Table 6.4. Here we simply use the min selection

function. However, the conclusion will not change by using different selection

functions. The finding is that more exemplars yield better classification perfor-270

mance (in MNIST, there is not much difference in ACC because the dataset is

rather easy), but the benefits to generation is less obvious. The reason might be

that we adopt a prototype-based classifier, but the generator does not closely

rely on prototypes. Thus, the performance gain in classification is more obvi-

ous and reasonable, since a larger M will make the estimation of the real class275

centroid in the feature space more accurate as explained Sec. 3.2, and the dual

use of the exemplars as training samples mentioned in Sec. 3.4 also benefit the

classification performance.

Effectiveness of Improved Initialization. To demonstrate its effective-

ness, we compare another two trivial settings: Random initialization (all layers):280

initialize all parameters randomly when entering a new training session; Random

initialization (exclusive layers): only initialize parameters of the exclusive layers

randomly and keep other shared layers untouched. The results of IntroGAN,

DGR, MeRGAN with different initialization strategies on (Fashion-)MNIST and

14

M
MNIST Fashion-MNIST SVHN

ACC FID ACC FID ACC FID

1 97.21 9.29 84.06 25.82 50.73 107.18

5 96.01 8.92 86.26 25.25 66.27 99.33

20 96.37 16.00 88.25 25.59 74.64 106.36

100 96.57 8.41 89.42 25.25 79.62 102.04

Table 4: The results of IntroGAN via different number of exemplars M on three datasets.

SVHN are shown in Table 5. For most cases, improved initialization can offer285

better performance for all these methods and the reason is that it can encourage

more knowledge transfer from old classes to new classes as elaborated in Sec.

3.4. Therefore, we use improved initialization by default.

Prototype-based Classification Strategy for Testing. Different set-

tings mentioned in Sec. 3.2 are: (1) class mean in the feature space as the290

prototype (relative prototype); (2) the feature of a certain fixed exemplar as

the prototype (fixed prototype); (3) the feature of each exemplar as a prototype

(multi-prototype). From Table 6, the conclusion is that relative prototype is the

most robust and fixed prototype is unstable which conforms to our analysis in Sec

3.2. Although multi-prototype gives similar performance to relative prototype,295

the former is more efficient in that it computes the distance between the test

sample and each prototype while the latter only needs to calculate one distance.

Based on the reasons above, we use relative prototype by default.

Prototype-based Classification Strategy for Training. We conduct

the following comparison with or without the selection functions2 and the results300

are shown in Table 7. From that, it can be observed that selection functions

generally achieve superior performance than the vanilla version. Especially on

a more difficult dataset SVHN, the discrepancy in accuracy is much higher.

The reason might be that selection functions incur useful perturbation when

2By “without selection functions”, we mean that Eq. 7 is used for both training and testing.

15

Model Init.
MNIST F-MNIST SVHN

ACC FID ACC FID ACC FID

IntroGAN

Rand. (all) 92.32 146.05 85.81 36.36 51.99 119.73

Rand. (excl.) 96.01 110.98 87.49 28.93 76.51 85.90

Improved 97.41 8.90 88.17 25.45 77.26 91.64

MeRGAN

Rand. (all) 61.71 169.04 80.57 38.60 42.61 128.34

Rand. (excl.) 97.74 10.59 77.23 52.76 53.55 98.03

Improved 97.66 10.23 82.93 25.56 53.70 99.67

DGR

Rand. (all) 73.73 118.92 69.00 113.32 66.35 109.67

Rand. (excl.) 74.69 59.13 70.00 88.43 66.53 116.72

Improved 89.88 49.16 68.35 107.84 69.35 108.52

Table 5: The overall performance of different methods using different initialization strategies

on (Fashion-)MNIST and SVHN. ‘init’ is short for initialization. ACC and FID are short for

TA-ACC and TA-FID respectively similar to Table 3 in the main paper. The best score is

highlighted in bold (for FID, the lower, the better). Init.=Initialization. Excl.=Exclusive.

Cls. strategy
MNIST Fashion-MNIST SVHN

ACC FID ACC FID ACC FID

Fixed prototype 74.40 109.09 62.85 26.71 41.27 102.41

Multi-prototype 97.37 8.81 85.88 24.64 60.99 108.36

Relative prototype 97.41 8.90 88.17 25.45 77.26 91.64

Table 6: The results of IntroGAN using different prototype-based classification strategies on

Fashion-MNIST and SVHN. The best score is highlighted in bold. Cls.=Classification.

estimating the real class mean and may increase discriminability. We use max305

as the selection function by default based on its superiority on SVHN.

6.5. Memory Requirements and Running Time

In Sec. 4.1 of the main paper, it is mentioned that ESGR [18] is not imple-

mented due to its memory inefficiency. In Table 8, we list the memory require-

16

Settings
MNIST F-MNIST SVHN

ACC FID ACC FID ACC FID

IntroGAN 97.21 17.84 87.41 25.95 70.64 107.09

IntroGAN (mean) 98.00 8.26 89.92 25.44 75.24 107.16

IntroGAN (random) 98.03 8.92 88.75 26.72 70.77 105.04

IntroGAN (max) 97.41 8.90 88.17 25.45 77.26 91.64

IntroGAN (min) 96.37 16.00 88.25 25.59 74.64 106.36

Table 7: The overall performance of IntroGAN with different selection functions (Eq. 9) on

different datasets. “IntroGAN” is the vanilla version where Eq. 7 is used for training.

Model (Fashion-)MNIST SVHN ImageNet-Dogs

IntroGAN 9.58MB+0.15MB 9.92MB+0.59MB 121.82MB+2.34MB

MeRGAN 9.73MB 10.07MB 122.29MB

DGR 13.49MB 13.97MB 196.22MB

ESGR 98.28MB 102.88MB 3710.76MB

Table 8: Memory cost of different methods on three datasets. IntroGAN has two kinds

of memories: the model (left) and the exemplars (right). Since we use the same network

architectures for MNIST and Fashion-MNIST, they have the same memory cost and their

results are merged in the single column.

ments of mainly compared methods that have the potential to perform joint310

incremental generation and classification. From the table, it can be observed

that the memory overload of ESGR is much higher than other methods, since it

trains a generator for each class. Among other methods, IntroGAN and MeR-

GAN are almost the same while DGR requires more memory (about 150% of

IntroGAN/MeRGAN). The reason is that the classifier and the discriminator315

are separate in DGR but shared in IntroGAN/MeRGAN.

Although IntroGAN is memory efficient among the GAN-based methods

listed above, one may still worry that GAN itself takes too much memory. What

if we use the same storage of IntroGAN to store the original images instead of

17

Model (Fashion-)MNIST SVHN ImageNet-Dogs

IntroGAN 0.037s 0.044s 1.782s

MeRGAN 0.032s 0.040s 1.082s

DGR 0.031s 0.033s 1.006s

ESGR 0.053s 0.057s 9.430s

Table 9: Running time of different methods on three datasets. For convenience, we record the

time for one iteration, which is enough to reflect the relative speed of these methods.

GAN model and train a conventional classifier? Such a analysis is elaborated320

in the supplementary material.

As for the running time, we only estimate the time for one iteration in the

first increment for convenience. The reason is that these methods run for the

same number of iterations, thus the time for one iteration is enough to reflect the

relative speed of these methods. The experiments are performed on one TITAN325

Xp GPU processor. The statistics of the running time is shown in Table 6.5.

From the results, it can be seen that DGR is the fastest one, because the

generator and the classifier are separate. Therefore, the generator loss does not

need to back propagate the gradients to update the classifier weights, and vice

versa, which saves some time. IntroGAN and MeRGAN need more time than330

DGR, where IntroGAN is a little more time-consuming. The main reason is

that obtaining the prototypes requires an extra forward pass of the network for

each iteration. However, this phenomenon can be alleviated by updating the

prototypes at a certain interval, especially at the end of training since there is

no need to update the prototypes so often (at each iteration).335

6.6. Memory Comparisons for GANs and Real Samples

Although IntroGAN is memory efficient among the GAN-based methods

listed in Table 8, one may still worry that GAN itself takes too much memory.

What if we use the same storage of IntroGAN to store the original images instead

of GAN model and train a conventional classifier? However, we should notice340

18

that such an approach can no longer perform incremental generation and we can

only evaluate its incremental classification performance. The method itself is a

special Joint Training approach which only uses a subset of the whole dataset

(denoted as subset). To calculate how many samples needed in subset for fair

comparisons with IntroGAN, we show statistics of model sizes and dataset sizes345

in Table 10. And the number of samples in subset is calculated by:

#Subset =
#Full × (SIntroGAN − SJT)

SFull
(5)

The number of samples in subset are shown in the last column of Table 10

(i.e. column #Subset). Note that on ImageNet-Dogs the calculated #Subset

has more samples than the original dataset, therefore we use all training samples.

For convenience, we assume each class has the same number of samples (i.e. each350

class has #subset
#class samples) and the experimental results are shown in Table 11.

From the table we can see that using a subset can have a higher TA-ACC,

indicating that using the same memory to store the compressed real images

can yield better result in incremental classification than GAN-based methods.

This is not surprising because current GANs care more about the image quality355

instead of the memory efficiency and we did not train as many iterations as

ordinary GANs in order to accelerate training in incremental scenarios. The

less satisfactory result is common for GAN-based methods, and we believe it

can be alleviated by using more lightweight GAN structure [28] or other memory

efficiency techniques such as introducing compression of CNNs into GANs, which360

is beyond the scope of this paper.

7. Class Orders

In Table 2 of the main paper, we mention that different number of class

orders are used for (Fashion-)MNIST, SVHN and ImageNet-Dogs. Below are

the details of the class orders:365

(Fashion-)MNIST/SVHN

19

Dataset #Full SFull SIntroGAN SJT #Subset

MNIST 60000 9.45MB 9.73MB 4.07MB 35937

Fashion-MNIST 60000 24.2MB 9.73MB 4.07MB 13476

SVHN 73257 173.61MB 10.51MB 4.08MB 2713

ImageNet-Dogs 35907 39.09MB 124.16MB 75.01MB 45148

Table 10: Statistics of the model and dataset size to calcuate how many samples should be

used in the subset (i.e. the #Subset column). #Full is the total number of samples in the full

dataset. SFull is the full dataset size. SIntroGAN is the size of the IntroGAN’s model plus

the stored exemplars. SJT is the size of Joint Training network. #Subset is the calculated

numbers of samples in the subset.

Dataset IntroGAN Subset

MNIST 97.83 99.12

Fashion-MNIST 87.58 92.47

SVHN 71.03 80.02

ImageNet-Dogs 32.04 34.45

Table 11: TA-ACC of IntroGAN and the conventional way that uses the same memory size to

store real images on four datasets (denoted as Subset because it is a subset of the full dataset).

Order 1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Order 2: 1, 5, 9, 4, 2, 6, 8, 7, 0, 3

Order 3: 7, 2, 4, 3, 9, 5, 6, 8, 1, 0

Order 4: 3, 1, 5, 9, 7, 2, 4, 6, 0, 8370

Order 5: 5, 3, 1, 0, 6, 9, 7, 4, 8, 2

The label 0-9 above is based on the definition in [15].

ImageNet-Dogs

Order 1: 172, 98, 86, 68, 115, 197, 42, 88, 199, 97, 160, 131, 31, 179, 41, 17,

206, 180, 104, 76, 188, 19, 203, 62, 30, 65, 20, 24, 44, 169375

Order 2: 199, 116, 129, 111, 178, 85, 186, 62, 117, 123, 26, 45, 143, 114, 67,

2, 81, 190, 167, 32, 68, 105, 97, 96, 112, 48, 93, 140, 144, 20

20

The label above is based on the label definition in [18].

References

[1] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, A. Stoian, D. Filliat, Gen-380

erative models from the perspective of continual learning, in: IJCNN, 2019,

pp. 1–8.

[2] G. M. van de Ven, H. T. Siegelmann, A. S. Tolias, Brain-inspired replay for

continual learning with artificial neural networks, Nature Communications

11 (1) (2020) 1–14.385

[3] K. Deja, P. Wawrzyński, D. Marczak, W. Masarczyk, T. Trzciński, Binplay:

A binary latent autoencoder for generative replay continual learning, in:

IJCNN, 2021, pp. 1–8.

[4] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, NeurIPS

33 (2020) 6840–6851.390

[5] F.-A. Croitoru, V. Hondru, R. T. Ionescu, M. Shah, Diffusion models in

vision: A survey, IEEE Transactions on Pattern Analysis and Machine

Intelligence (01) (2023) 1–20.

[6] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,

Improved techniques for training gans, in: NeurIPS, 2016, pp. 2234–2242.395

[7] P. Dhariwal, A. Nichol, Diffusion models beat gans on image synthesis,

NeurIPS 34 (2021) 8780–8794.

[8] E. Luhman, T. Luhman, Knowledge distillation in iterative generative mod-

els for improved sampling speed, arXiv preprint arXiv:2101.02388 (2021).

[9] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Freeman,400

A. Torralba, Gan dissection: Visualizing and understanding generative ad-

versarial networks, in: ICLR, 2018.

21

[10] R. Gao, W. Liu, Ddgr: continual learning with deep diffusion-based gener-

ative replay, in: ICML, 2023, pp. 10744–10763.

[11] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert, iCaRL: Incremental405

classifier and representation learning, in: CVPR, 2017, pp. 2001–2010.

[12] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, K. Alahari, End-

to-end incremental learning, in: ECCV, 2018, pp. 233–248.

[13] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980 (2014).410

[14] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-

plied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.

[15] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms, arXiv preprint415

arXiv:1708.07747 (2017).

[16] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading

digits in natural images with unsupervised feature learning, in: NeurIPS

Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, Im-420

proved training of wasserstein gans, in: NeurIPS, 2017, pp. 5769–5779.

[18] C. He, R. Wang, S. Shan, X. Chen, Exemplar-supported generative repro-

duction for class incremental learning, in: BMVC, 2018, pp. 3–6.

[19] A. Khosla, N. Jayadevaprakash, B. Yao, F.-F. Li, Novel dataset for fine-

grained image categorization: Stanford dogs, in: Proceedings of the IEEE425

Conference on Computer Vision and Pattern Recognition Workshop on

Fine-Grained Visual Categorization (FGVC), Vol. 2, 2011, p. 1.

[20] T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization

for generative adversarial networks, in: ICLR, 2018.

22

[21] A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary430

classifier gans, arXiv preprint arXiv:1610.09585 (2016).

[22] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu, et al., Memory

replay GANs: Learning to generate new categories without forgetting, in:

NeurIPS, 2018, pp. 5962–5972.

[23] H. Shin, J. K. Lee, J. Kim, J. Kim, Continual learning with deep generative435

replay, in: NeurIPS, 2017, pp. 2994–3003.

[24] A. Chaudhry, P. K. Dokania, T. Ajanthan, P. H. Torr, Riemannian walk

for incremental learning: Understanding forgetting and intransigence, in:

ECCV, 2018, pp. 532–547.

[25] Z. Li, D. Hoiem, Learning without forgetting, in: ECCV, 2016, pp. 614–629.440

[26] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, M. Nabi, Learning to

remember: A synaptic plasticity driven framework for continual learning,

in: CVPR, 2019, pp. 11321–11329.

[27] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, Y. Fu, In-

cremental classifier learning with generative adversarial networks, arXiv445

preprint arXiv:1802.00853 (2018).

[28] T. Shimizu, J. Xu, K. Tasaka, MobileGAN: Compact network architec-

ture for generative adversarial network, in: Asian Conference on Pattern

Recognition, Springer, 2019, pp. 326–338.

23

	Introduction
	More Discussions with Some Related Works
	Prototype-based Classifier from the Bayesian Perspective
	Comparisons of Incremental Learning Benchmarks
	Implementation Details
	Additional Results
	Result Curves on MNIST and ImageNet-Dogs
	Generated Images Over Time
	Numbers of Generated Images of DGR
	Hyper-parameter Analysis
	Memory Requirements and Running Time
	Memory Comparisons for GANs and Real Samples

	Class Orders

